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ABSTRACT 
Lanchester equations and their extensions are widely used in calculating 
aggregate attrition in models of warfare.  However, due to a lack of high-quality 
battle data, few validation studies have had strong findings.  In particular, there 
are only a few data sets containing detailed, two-sided, time-phased information.  
This study uses the Center for Army Analysis’s recently compiled Kursk Data 
Base to examine how well the various Lanchester laws fit the southern front of the 
Battle of Kursk.  The Kursk Data Base is unique in that it records the daily 
combat status of all of the division-level units as: (1) all combat forces in the 
campaign; (2) all combat forces within contact; and (3) combat forces within 
contact that are actively engaged.  We find that much more of the variation in 
casualties during the Battle of Kursk is explained by the status of the forces 
considered and the phases of the battle than by the Lanchester variant used.  
Specifically, we obtain substantially better fits when we use only the forces that 
are actively fighting.  An additional improvement in fit is gained by breaking the 
battle into its natural phases.  Finally, when comparing fits among the basic laws, 
we observe that Lanchester’s linear law fits these aggregate data better than the 
logarithmic law does and much better than the square law does.   
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1.   INTRODUCTION  

Models of warfare provide information to assist decision-makers in making and 

justifying decisions that involve billions of dollars and impact many lives.  One 

complicated characteristic of most warfare models is the representation of the decrease in 

force levels over time, commonly referred to as attrition.  In the year that World War I 

began, British inventor F.W. Lanchester (1914) proposed a set of differential equations in 

order to quantitatively justify the importance of force concentration on the modern 

battlefield.  Lanchester believed that “ancient combat” consisted of a series of one-on-one 

duels between individual soldiers.  Therefore, the combatants’ force levels had no effect 

on the exchange ratio.  However, Lanchester hypothesized that in “modern combat” 

forces have the capability of aiming fire from different locations onto a single target.  In 

this case, each side’s casualty rate is proportional to the number of enemy firers, and an 

obvious advantage exists in massing forces.  For these two situations, Lanchester worked 

out state equations that relate the two side’s force levels over time.  Since then, other 

variants and extensions have been proposed, including one known as the logarithmic law, 

in which a force’s losses are proportional to its own numerical strength (see Peterson, 

1967). 

In an effort to realistically model attrition processes, many aggregate-level 

combat models employ Lanchester-type equations and their derivatives.  As one would 

imagine, with so much relying on Lanchester’s equations, there have been several efforts 

using historical combat data to validate them and to determine which law, if any, best fits 

the data.  Unfortunately, there have been few clear results.   

Using the Center for Army Analysis’s (CAA) recently developed Kursk Data 

Base (KDB), this paper explores the validity of Lanchester equations as a model of the 

manpower attrition in the Battle of Kursk in World War II.  In previous studies using 

historical data to validate Lanchester equations, the authors make no distinction between 

those forces that are actually engaged and those that are not engaged.  However, the KDB 

uniquely distinguishes between all combat units, all combat units within contact, and all 

combat units within contact and engaged.  Quite possibly, Lanchester equations may 

prove more applicable to one of these data types.  Such a finding could prove useful in 
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determining how best to utilize Lanchester-based equations in combat, training, and 

analysis.  In order to examine this, we construct three separate data sets from the KDB, 

using names borrowed from Gozel (2000).  These data sets divide the KDB into three 

inclusive categories: (1) all combat unit data (ACUD); (2) combat unit data for those 

units that are within contact (CCUD); and (3) combat unit data for only those units that 

are actually fighting (FCUD).  The Center for Army Analysis (1998) defines within 

contact units as those units “within contact of the front line.”  The ones we call fighting 

units are those that are “actively engaged in combat…[either by] directly participating in 

an attack or being assaulted by an enemy.”  Using these three categories, we answer two 

key questions in this paper:  (1)  Which, if any, of the basic Lanchester laws (square, 

linear, and logarithmic) best fit the highly detailed Kursk battle data?  (2)  How is the fit 

affected by the status of the forces considered and the phases of the battle?  

The paper is organized as follows.  Section 2 defines a generalized form of 

Lanchester’s homogeneous attrition equations and highlights some of the efforts to 

validate them—with an emphasis on the very few Lanchester attrition studies using  

time-phased data.  A brief overview of the Battle of Kursk, often called the greatest tank 

battle in history, is provided in Section 3.  Section 4 presents and discusses the three 

inclusive data sets that we use in our analysis.  In Section 5, we examine how well a 

variety of different Lanchester models fit the various data sets.  A concluding section 

summarizes the paper’s key findings.   

2.   BACKGROUND 

A generalized form of the Lanchester model, as specified by Bracken (1995), is: 

B (t) = a(d or 1/d)R(t)pB(t)q, (2.1) 

R (t) = b(d or 1/d)B(t)pR(t)q, (2.2) 

where B(t) and R(t) are the strengths of the Blue and Red forces at time t, B (t) 

and R (t) are the rates at which the Blue and Red forces are being attrited at time t, a and b 

are attrition rate parameters, p is the exponent parameter of the attacking force, q is the 

exponent parameter of the defending force, and d is a tactical parameter that adjusts the 
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attrition to the defender by a factor of d and the attacker by a factor of 1/d.  Initial force 

sizes are represented by B(0) and R(0) and, when numerically calculated with time step 

∆t, are incrementally decreased as follows:  B(t + ∆t) = B(t) – ∆t B (t) and  

R(t + ∆t) = R(t) – ∆t R (t).   

Three specific variations of these equations are of particular interest due to their 

intuitive nature and simplicity.  A brief introduction to them follows.  A comprehensive 

treatment can be found in Taylor (1983).  

Lanchester (1914) stated that “the conditions of ancient warfare” made it “not 

possible…to bring other than approximately equal numbers of men into the actual 

fighting line.”  Consequently, “one man would ordinarily find himself opposed to one 

man,”—i.e., the battle was essentially a collection of one-on-one duels.  While not 

explicitly written down, Lanchester’s model for ancient combat assumes that the 

exchange ratio (i.e., B (t)/ R (t)) is a constant, independent of the force levels.  This 

occurs whenever p − q = 0 in Equations (2.1) and (2.2).  In such a case, the state equation 

relating force levels at time t is b(B(0) – B(t)) = a(R(0) – R(t)).  Hence, this is commonly 

known as Lanchester’s linear law.  The most commonly used linear law is when  

p = q = 1.  In such a case, the attrition is proportional to both the number of shooters and 

targets.  This corresponds to a situation in which Lanchester described as “firing into the 

brown.”  That is, rather than aiming at specific targets, the firers shoot randomly into an 

area containing the targets.  Consequently, this variant is frequently referred to as  

“area fire” and is often used to model indirect fire (see Taylor, 1983).   

Lanchester contrasted “ancient conditions” with what he called “modern 

conditions.”  Under modern conditions he theorized that the firepower of a force could be 

concentrated on the enemy; hence a side’s attrition “will be directly proportional to the 

numerical strength of the opposing force.”  That is, p = 1 and q = 0.  Under this 

formulation, or more generally when p − q = 1, the state equation relating force levels at 

time t is b(B(0)2–B(t)2) = a(R(0)2–R(t)2).  Consequently, this formulation is known as 

Lanchester’s square law and is often referred to as aimed fire.  Lanchester showed the 

added importance of force size (relative to force quality) if attrition follows the square 

law.  He called this “the principle of concentration.”  Of course, the conditions 
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underlying these formulations are never fully realized.  For example, the ability to 

perfectly concentrate fires requires an unobtainable degree of coordination.  Nonetheless, 

using some historical examples, Lanchester (1914) concludes that it is an “important 

truth” that “the fighting strength of a force can be represented by the square of its 

numerical strength.”  His square law is probably the most used of the various Lanchester 

variants. 

A third commonly used version, which Lanchester did not address, is when p = 0 

and q = 1 (or, more generally, when p – q = –1).  In these situations, the state equation is 

b(ln(B(0)/B(t))) = a(ln(R(0)/R(t))), and the model is called the logarithmic law.  In this 

seemingly counterintuitive set-up, each side’s losses are proportional to their own force 

size.  This can represent situations in which the primary causes of casualties are disease, 

desertion, equipment failures, or other non-battle losses.  In addition, this may apply to 

battles in which the casualties are more a function of the number of targets that are 

located and attacked.  For example, Fricker (1998) hypothesized that during  

Desert Storm, “given the Allied force size, Iraqi casualties [may have been] simply a 

function of how many Iraqi ‘targets’ existed.”  Pederson (1967), who is credited with 

developing this model, observed this phenomenon empirically in small unit tank duels 

during World War II.  Weiss (1963) found a similar relationship in aerial combat, and 

posited that since most kills were made by only a small number of pilots, that perhaps 

“doubling the enemy doubles the number of sheep for the wolf.” 

This paper focuses on the three Lanchester laws just described—all special cases 

of Equations (2.1) and (2.2), in which the losses suffered by each side have the same 

functional form.  While we do not consider them in this research, there are asymmetric 

extensions to Lanchester’s work that deserve mention.  Typically, these involve situations 

in which one side has an information advantage.  For example, Deitchman (1962) 

modeled guerrilla warfare as one in which one side (an ambushing force) attrits the other 

side with aimed fire, while suffering casualties due to area fire.  More recently, Darilek et 

al. (2001) study a family of asymmetric models that they call Lanchester information 

laws. 
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Previous studies on the validation of Lanchester equations using historical data 

have been limited due to the dearth of high-quality data sets.  These studies fall into two 

categories: (1) before and after data for a large number of battles; and (2) the daily force 

levels and casualties within an individual battle.  We discuss the former first—a more 

quantitative review of these data sets can be found in Speight (2002). 

In a remarkable series of papers, Osipov (1915), independent of Lanchester’s 

work, derived and empirically tested Lanchester’s square law and related laws.  Using 

data on 38 battles, ranging from Austerlitz in 1805 to Mukden in 1905, Osipov found that 

a mixed square-linear law empirically “explains the dependence of casualties on 

numerical strength much better than [the square law].”  However, he also stated that the 

historical analysis “cannot give conclusive demonstration of the theory.”  Using data on 

1,493 battles from 1618 to 1905, Willard (1962) concluded that “Lanchester’s square law 

is the poorest among poor alternative choices.”  Weiss (1966), integrating a series of U.S. 

Civil War data sets, found that “in battles other than attacks on fortified lines the casualty 

ratios appeared to be independent of the force ratios”—as one would get with the linear 

law.  In attacks of fortified positions, however, he found that “the losses of the attacker 

were proportional to the force size of the defender”—as would be produced by the square 

law.  Applying Willard’s approach to 60 World War II battles, Fain (1977) found that the 

best-fitting Lanchester model was somewhere between a linear and a logarithmic law.  

And, in perhaps the most complete study of before and after battle data, Hartley (2001), 

using 857 battles from 280 BC through 1973 (with fewer than 100 from pre-1756) 

determined an empirical “law of attrition” from Equations (2.1) and (2.2) as p = .45 and  

q = .75.  This, again, is a mixed linear-logarithmic law. 

When people talk about a “law of aggregate attrition,” it is with respect to the 

central tendencies of the exponent parameters p and q over the ensemble of battles that 

have occurred.  Clearly, the ability to mass fires depends on the forces, their equipment, 

the terrain, the forces’ postures, etc.  Furthermore, the attrition coefficients, a and b, are 

certain to wax and wane, even within a battle, and vary from battle to battle by a 

tremendous amount—as there are many battles in which only a small percentage of 

forces are attrited and some in which there is near total annihilation.  As Hartley and 

Helmbold (1995) write: 
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The Lanchester coefficients are often referred to as constants and it is easy 
to forget that this means only that the coefficients are assumed to be 
constant for a given battle or portion of a campaign.  

This complicates our analysis in studies using before and after battle data because 

Equations (2.1) and (2.2) have five parameters in them (a, b, p, q, and d), and the two 

data points result in an over-determined system of equations, with an infinite number of 

solutions, for any individual battle.  Thus, the results found by investigating multiple 

battles have been either mostly qualitative in nature or have relied on strong, untested 

assumptions on the model parameters—such as a = b and is constant over time  

(Willard, 1967).  Because of this, Hartley and Helmbold (1995) write that “[u]nless we 

are able to procure [more detailed two-sided, time-phased battle data sets] we will not be 

able to validate the homogeneous square law (or any other attrition law).”   

Using daily manpower data for 36 days of the Battle of Iwo Jima, Engle (1954) 

conducted the first analysis that used time-phased battle data.   Using daily force and 

casualty levels for the attacking U.S. Marines and before and after information on the 

defending Japanese (who died almost to the last man), he visually showed that the actual 

U.S. losses reasonably tracked what was obtained by a fitted square law.  However, Engle 

provided no goodness-of-fit measure to quantitatively assess the match and noted that 

“other forms of Lanchester’s equations might apply to the Battle of Iwo Jima as well.”  

Busse (1971) analyzed 20 days of manpower battle data from the Inchon-Seoul campaign 

of the Korean War.  He also visually compared how the daily casualties matched what 

one would expect from the square law, though he found that the homogeneous square law 

did not fit well.  Using the same data, Hartley and Helmbold (1995) showed how visual 

comparisons can be misleading and, by applying statistical tests to the data, concluded 

that: (1) “any square law effects are largely masked by other factors”; and (2) the data 

better fit a set of three separate battles (one distinct battle every six or seven days). 

The Iwo Jima and Inchon-Seoul data sets were the only time-phased data sets that 

had been analyzed with respect to Lanchester’s equations until CAA developed detailed 

time-phased data on the World War II battles of Ardennes and Kursk (see Data Memory 

Systems (1990) and Center for Army Analysis (1998)).   Moreover, while the previous 

two data sets contain only manpower data, and reliably for only one side, the CAA 
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databases have daily on-hand and loss data by weapon system type on scores of division-

level units for both sides.   

There have been a series of validation studies, yielding conflicting results, based 

on the Ardennes data set.  Bracken (1995) formulated four models for the Ardennes 

campaign using Equations (2.1) and (2.2).  He also developed a homogeneous data set 

representing the combined strength of manpower, tanks, armored personnel carriers, and 

artillery.  By means of a constrained grid search, Bracken estimated the parameters (a, b, 

d, p, q) that minimized the sum of the squared residuals (SSR) [see Equation (2.3)] for 

the first 10 days of the of the Ardennes campaign with and without the defensive 

parameter (d) for combat forces and for total forces.  Among other conclusions, Bracken 

found that “the Lanchester linear equation fits the [Ardennes] campaign.”  

SSR =  (2.3) 2

1 1
( ( *) ) ( ( *)p q p q

i i i i i i i i
i i

B a d R B R b d B R
= =

− + −∑ ∑ 2)

Where: 

i indexes the first 10 days of the battle, and 
di* = d if the side (Red or Blue) is on the defensive on day i and 1/d if the side is 
on the offensive.  If neither or both sides are clearly on the offensive, then di* = 1. 

Fricker (1998) followed up Bracken’s study of the Ardennes campaign by 

applying linear regression to logarithmically transformed data to determine each of the 

parameters that resulted in the best fit (i.e., minimized SSR) when compared to the actual 

data for all 33 days of the Ardennes data set.  Fricker also included air sortie data and 

employed an algorithm that reconfigured daily force levels “to estimate initial force sizes 

that reflect all of the troops that eventually fought in the campaign and then subtract the 

casualty attrition from this total on a daily basis.”  Fricker found that neither the linear 

nor the square law fit well.  He concluded that the force’s losses were more a function of 

their own force level than of their opponent’s force level, as one would get from the 

logarithmic law.   

Wiper et al. (2000) used Bayesian methods to reexamine Bracken’s and Fricker’s 

Ardennes data.  Their model is more general in that it uses two defensive parameters, a 

separate one for each side.  Using Gibbs sampling, they estimate several posterior 
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quantities of interest, in particular the means of p and q.  Using Bayes factors, they 

conclude that “the logarithmic law fits best [and] the linear laws cannot be rejected, but 

the square law does seem implausible.”  However, they show that their results are quite 

sensitive to the prior selected.  Lucas and Turkes (2004) found that the SSR surfaces are 

relatively flat—thus explaining why different assumptions and fitting techniques yield 

such diverse results.  Moreover, they found: 

[T]here is little difference in fits between the square, linear, and 
logarithmic Lanchester laws—with those observed differences explainable 
simply by chance variation. . . . More importantly . . . no constant attrition 
coefficient generalized Lanchester model [fits] very well . . . [with] much 
more of the variation in casualties . . . explained by the phases of the 
battle.   

Looking across the breadth of these studies, we find very few strong or consensus 

results.  In fact, nearly two decades ago, Schneider (1985), in a review of “several 

attempts to verify Lanchester’s equations in the light of military history,” concluded that, 

“[a]t best, one can say that the results of these studies have been contradictory.”  

Subsequent studies seem not to have improved the situation. 

3.  HISTORICAL OVERVIEW OF THE BATTLE OF KURSK 

Following its disastrous defeat at Stalingrad in the winter of 1942–43, the German 

military’s offensive operations on the Eastern Front came to a near standstill.  

Desperately seeking to regain lost momentum, Adolf Hitler set his sights on the Kursk 

salient, which extended nearly 150 km to the west and was nearly 200 km wide.  This 

salient was the dominant feature on the front and offered the perfect target for German 

tactics that had proved so successful in the past—encircling vast Soviet armies and 

destroying them in the process.   

The German plan, named Operation Citadel, consisted of a classic pincer 

maneuver.  Field Marshal Gunther von Kluge’s Army Group Center, led by General 

Model’s Ninth Army, was to attack from the northern flank of the bulge and drive toward 

the town of Kursk.  Here, it would link up with General Hoth’s 4th Panzer Army from 

Field Marshal Erich von Manstein’s Army Group South, which was attacking from the 

southern flank.  If successful, the Germans would encircle and destroy five Soviet armies, 
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forcing the Soviets to delay their operations and allowing the German armed forces to 

regain the initiative.  Just days before the offensive was launched, Hitler declared: 

This attack is of decisive importance.  It must succeed, and it must do so 
rapidly and convincingly.  It must secure for us the initiative. . . . The 
victory of Kursk must be a blazing torch to the world (Tsouras, 1992). 

Due to extensive German delays and a fruitful intelligence-gathering effort, the 

Soviets were well prepared for the German assault.  They worked feverishly to prepare a 

formidable defensive front, consisting of up to seven defensive lines with anti-tank strong 

points, anti-tank ditches, and extensive belts of minefields.  The Soviets’ knowledge of 

the German plan was so extensive that they knew the exact day that Germany would 

launch its assault.  In fact, an hour before the German attack finally began on 5 July 1943, 

the Soviets launched a pre-emptive artillery barrage on known enemy assembly areas. 

Although the barrage caused a momentary delay, the Germans began the assault 

at 0700 hours.  In the North, Model’s Ninth Army struggled with the prepared Soviet 

positions for several days, gaining only six miles of ground before stalling.  With no hope 

of breaking the formidable Soviet defense, the Germans became mired in a war of 

attrition and were eventually thrown back in disarray.  However, in the South, a different 

story was developing.  German forces made significant daily gains and, by 11 July, were 

in position to capture the town of Prokhorovka.  A victory here would enable the 

Germans to establish a bridgehead over the Psel River, the last natural barrier between 

the Germans and Kursk.  Recognizing the importance of Prokhorovka, the Soviets 

deployed their strategic armored reserve, the Fifth Guards Tank Army, to meet the 

Germans head-on. 

The two forces collided on 12 July in what has become known as the “largest tank 

battle ever fought,” with 483 SS tanks fighting 525 Soviet tanks.  At the end of the day, 

the Soviets had lost 375 tanks, while the German losses numbered only 92.  Despite this 

disparity, von Manstein’s drive to Kursk was stopped by the sheer impact of the battle.  

Combined with the Soviet offensive in the North and the Allied invasion of Sicily two 

days later, Hitler decided to abruptly cancel Operation Citadel, despite the pleas of  

von Manstein, who wrote: “[T]he last German offensive in the East ended in a fiasco, 

10 



 

even though the enemy . . . suffered four times their losses” (Glantz, 1999).  The 

Germans fell back into defensive positions, while the Soviets began a series of 

counterattacks, regaining all lost ground by 23 July.  The battle to regain momentum in 

the East had been lost, and the Germans would never again mount a significant offensive 

against the Red Army.  (See Wilson (2004) and the references in this section for more on 

the Battle of Kursk.) 

4.   THE BATTLE OF KURSK DATA 

The Kursk Data Base (KDB) is documented in the Kursk Operation Simulation 

and Validation Exercise – Phase II (KOSAVE II) report (Center for Army Analysis, 

1998) and is used to construct the databases we analyze in this paper.  The inputs to the 

KBD were provided by The Dupuy Institute using archived military records in Germany 

and Russia.  The Dupuy Institute is one of the premier military historical research 

organizations in the world.  More information on them and their numerous databases and 

publications can be found at http://www.dupuyinstitute.org/index.htm [accessed  

17 March 2004].  The Kursk and Ardennes data sets were constructed to “assess and 

improve combat model credibility” (Center for Army Analysis, 1998).  Our use of the 

data is similar to CAA’s, though with a much simpler model.   

The KDB is highly detailed, containing two-sided data that are time-phased daily 

from 4 July 1943 through 18 July 1943.  The data are taken from the southern front of the 

Battle of Kursk and are organized, at the division level, into the following sections: units 

and combat posture status; personnel status and casualties; weapons status and losses; 

ammunition status; aircraft sortie status; and geographic unit positions and progress.  

While the KDB covers 15 days, since the battle didn’t really begin until day two of the 

database, our analysis considers only the last 14 days. 

In the KDB, manpower represents combat manpower, which is composed of all 

infantry, armor, and artillery forces—including headquarters units.  Logistics and support 

personnel are not in the database.  Daily combat manpower is calculated by summing the 

“On-Hand” (OH) manpower totals in the KOSAVE II report for all combat and 

headquarters units.  The KDB organizes casualties into four separate categories:  killed, 

wounded, captured/missing in action, and disease and nonbattle injuries.  Daily combat 
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losses are calculated by summing these categories.  The fighting status of combat units is 

also attained from the KOSAVE II report, which specifies the status (fighting, within 

contact but not actively fighting, and not within contact) for each combat unit on each 

day of the battle.  Using this, the database is divided into three inclusive sets: all combat 

unit data (ACUD); combat unit data for those units that are within contact (CCUD); and 

combat unit data for only those units that are actually fighting (FCUD).   

Tables 1 and 2 show the ACUD, CCUD, and FCUD manpower data sets, on-hand 

and losses, for the Germans and Soviets.  Note that the Soviets’ numerical advantage 

decreases as the degree of engagement status becomes more refined.  For example, using 

the ACUD data, we see that the Germans were severely outnumbered when they 

attacked, and throughout the battle.  However, the Germans continually had a higher 

proportion of their forces in contact and engaged.  For example, on day one, in the FCUD 

data, the German’s outnumbered the Soviets by nearly three to one.  We also see that, 

with the ACUD data, the combat forces on both sides (particularly the Soviets) declined 

steadily during the battle.  On the other hand, there is much more variability in force 

levels in the CCUD and FCUD data sets.  During the course of the battle, casualties 

generally decreased, particularly for the Germans.  It is important to emphasize that 

correlations among the variables, and their correlations with time, complicate the analysis 

by confounding relationships.  For example, what is the primary cause of the decrease in 

German casualties?  Is it the decrease in the Soviet force level, the decrease in the 

German force level, a combination of both, and/or other factors that are correlated with 

time?   
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Table 1.  Daily German on-hand manpower and losses as a function of 
contact and fighting status. 

       German Manpower Data

Day OH Loss OH Loss OH Loss
1 301,341 6,192 262,055 5,956 247,866 5,863
2 297,205 4,302 276,383 4,275 261,368 3,604
3 293,960 3,414 273,660 3,392 211,212 3,047
4 306,659 2,942 275,511 2,889 227,314 2,744
5 303,879 2,953 287,391 2,818 224,664 2,623
6 302,014 2,040 248,538 1,993 200,686 1,848
7 300,050 2,475 279,722 2,456 232,938 2,360
8 298,710 2,612 279,046 2,588 262,920 2,575
9 299,369 2,051 279,697 2,031 279,697 2,031

10 297,395 2,140 276,604 2,113 208,498 1,677
11 296,237 1,322 291,571 1,303 226,075 1,064
12 296,426 1,350 289,582 1,331 131,800 469
13 296,350 949 237,336 871 149,538 495
14 295,750 1,054 235,653 1,004 188,079 807

mean 298,953 2,557 270,911 2,501 218,047 2,229

ACUD CCUD FCUD

 
 

 
Table 2.  Daily Soviet on-hand manpower and losses as a function of contact 

and fighting status. 

       Soviet Manpower Data

Day OH Loss OH Loss OH Loss
1 507,698 8,527 181,474 8,301 84,783 8,268
2 498,884 9,423 221,666 8,971 141,589 8,888
3 489,175 10,431 238,993 9,076 163,378 8,898
4 481,947 9,547 256,687 8,026 145,875 7,534
5 470,762 11,836 284,050 10,747 179,607 8,608
6 460,808 10,770 297,105 10,239 166,526 8,138
7 453,126 7,754 358,172 7,485 219,343 6,634
8 433,813 19,422 344,513 18,932 252,844 18,072
9 423,351 10,522 339,299 10,220 175,121 8,688

10 415,254 8,723 330,225 8,439 206,465 6,148
11 419,374 4,076 302,666 3,868 89,898 2,472
12 416,666 2,940 272,394 2,802 87,769 2,114
13 415,461 1,217 263,878 1,150 37,981 457
14 413,298 3,260 282,532 3,191 119,346 2,404

mean 449,973 8,461 283,832 7,961 147,895 6,952

ACUD CCUD FCUD
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5.   LANCHESTER AND THE BATTLE OF KURSK AS A FUNCTION OF 

THE UNITS’ COMBAT STATUS 

This section investigates how well a variety of homogeneous constant coefficient 

Lanchester laws fit the all combat unit data (ACUD), within contact combat unit data 

(CCUD), and the fighting combat unit data (FCUD).  Note: Lucas and Turkes (2004) 

found that the results are extremely insensitive to Bracken’s defense parameter d; hence 

we do not include it in our analysis.   

5.1   Estimation Procedure 

Given the values in Tables 1 and 2, we determine what values of the parameters 

(a, b, p, q) best fit the data.  Of course, our focus is on p and q, for they relate to the 

Lanchester laws of attrition.  In particular, we are interested in whether the square, linear, 

or logarithmic laws fit well and how this depends on the forces used in the calculations.  

Our measure of fit, taken from Dinges (2001), is the R2 statistic.  R2 measures the 

proportion of the squared deviation explained by the model over that obtained by using 

the average losses.  The R2 value is a linear function of SSR and is calculated with the 

following formulas: 
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2 1 SSRR
SST

= − . (5.3) 

Where:  B  and R  are the mean daily losses for the Soviets and Germans, 

respectively, and  and  are the estimated attrition coefficients. â b̂

A lower SSR value or a greater R2 value indicates a better fit.  A perfect fit would 

yield an R2 of one.  An R2 of zero means that the model adds nothing to the fit above and 

beyond using the mean daily losses as the estimated attrition.  Given p and q values, the 
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attrition coefficients (  and ) that maximize Râ b̂ 2 can be easily found by regression 

through the origin (see Equations (5.4) and (5.5)):  
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In addition, by varying p and q and plotting the contours of the maximum R2 as a 

function of p and q, we can get an understanding of how the possible pairs of Lanchester 

exponent parameters fit the battle.  Furthermore, from these contours, we can visually 

identify the best-fitting (i.e., optimal) values of p and q. 

5.2   The Basic Lanchester Laws 

Using the three inclusive combat status data sets, the best-fitting Lanchester 

square, linear, and logarithmic laws are calculated using the procedure specified in 

Section 5.1.  The results are summarized in Table 3.  We see that the FCUD data provide 

much better fits for all three laws.  Moreover, all of the fits using the ACUD and CCUD 

data sets are only slightly better than what would be obtained by using the mean losses as 

estimates, as evidenced by the near-zero R2 values.  A comparison of the goodness of fits 

within the FCUD data shows that the linear law best fits the data—with an R2 value of 

.622.  Thus, 62 percent of the squared variation in the data can be explained by the linear 

law model.  The logarithmic law provides the next-best fit, with an R2 of .535.  It is 

interesting to note that, for such highly aggregated data, Lanchester’s law for modern 

combat—i.e., the square law—is the poorest, by far, of the FCUD fits, with an R2 of just 

under .3.  In addition, by examining the coefficients of the various data sets and models, 

the Germans are estimated to be anywhere from 2.21 to 4.90 times as effective, per 

soldier, as the Soviets.  This compares favorably with Dupuy’s estimate of 2.68  

(Dupuy, 1985). 
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Table 3.  Best-fitting basic Lanchester law fits for the three combat status data sets. 

Data Set Lanchester Law â  b̂  R2

 Square .0284 .0058 .034 

ACUD Linear 6.35×10-8 1.96×10-8 .110 

 Logarithmic .0190 .0086 .079 

 Square .0296 .0081 .014 

CCUD Linear 1.03×10-7 2.97×10-8 .064 

 Logarithmic .0279 .0092 .068 

 Square .0333 .0137 .298 

FCUD Linear 2.19×10-7 5.89×10-8 .622 

 Logarithmic .0481 .0106 .535 

 

5.3   The Best-Fitting Lanchester Law 

In the previous subsection we restricted our search to the basic Lanchester models 

and found that the best-fitting of them is the linear law on the FCUD data.  The question 

remains: what values of p and q (i.e., which generalized Lanchester law) gives the best fit 

to the Kursk data?  Since the FCUD data fit so much better than the CCUD and ACUD 

data, we focus on them.  In order to answer this question, we need to maximize R2 over 

four parameters (a, b, p, and q).  We do so as follows:  for given p and q, use Equations 

(5.4) and (5.5) to find  and , and the corresponding maximum Râ b̂ 2, from Equation 

(5.3).  We do this for a grid of p and q values and plot the contours of the maximum R2 as 

a function of p and q.  It turns out that the response (R2) is a smooth function of p and q—

with an easily identifiable unique mode (see Figure 1).  Moreover, not only can we 

visually assess where the optimum occurs, but we also obtain an understanding of how 

the surface of Lanchester exponent parameters fits the battle.  The optimum p and q are 

found by a grid search, with three decimal places of precision, over the visually identified 

area where the optimum occurs.  The best-fitting Lanchester law is p = 1.156 and  

q = 1.000, with an R2 of .624.  This is quite close to the linear law.  In fact, the difference 

in goodness of fit (i.e., .002) is negligible.   
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We see from Figure 1 that the maximum R2 surface is relatively flat with respect 

to p and q.  Specifically, the maximum R2 can be within roughly 10 percent of the 

optimum for q values from about .5 through 1.5 and p values from below zero to above 

two.  The contours drop much faster as q moves away from the optimum than when p 

does.  This results in the logarithmic law having a much better fit than the square law. 
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Figure 1.  Contour plot of the maximum R2 as a function of exponent parameters p and q. 

While the contours are not shown, since the fits are so much poorer, the optimum 

Lanchester law is: for ACUD, p = 7.37 and q = 1.78, with an R2 of .221; and for CCUD, 

p = 0.40 and q = 0.93, with an R2 of .071.  These were determined by two decimal 

precision grid searches around the visually obtained optimums.  We see that even the 

optimum fits are quite poor for these data sets.  Moreover, the optimal ACUD parameters 

are highly implausible, with a p of 7.37 implying that doubling one’s force increases the 

opponent’s attrition by a factor of 165.4. 

5.4   Assessing Differences in Fits 

All of the above comparisons involved point estimates on a single event.  In this 

subsection we use the bootstrap (see Efron and Tibshirani, 1993) to assess the 
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significance in differences in maximum R2 values between the Lanchester models for the 

FCUD data.  Since all battles are nonrepeatable events, and we only get one observation, 

we must carefully specify what we mean by significant differences.  Towards that end, 

we define the natural variation as that which would occur (due to the inherent 

randomness of combat) if many essentially identical forces fought similar 14-day battles. 

In fitting the Lanchester models above, the 14 days of the battle are essentially 

treated as 14 separate one-day battles—as this is the resolution of the data.  The 

variability in the maximum R2 for each of the basic and optimum laws is estimated 

nonparametrically by resampling the empirical daily attrition coefficients from the 14 

days.  That is, for each of the Lanchester laws, we calculate  and  for i = 1, 2, …, 14; 

where  and  are the daily attrition parameters that achieve equality in Equations (2.1) 

and (2.2).  The 14 ( , ) pairs are the attrition rates that actually occurred in the battle 

(according to the KDB) if the Lanchester law being used (to generate the resampled 

battles) held exactly.  A “bootstrap battle” is generated by sampling with replacement 

from the 14 ( , ) pairs and generating 14 daily “bootstrap casualties” by using the 14 

resampled ( , ) pairs and the actual force levels.   

ˆia îb

ˆia îb

ˆia îb

ˆia îb

ˆia îb

Using the above procedure for the three basic Lanchester laws and the optimum 

Lanchester fit, 10,000 bootstrap battles (from the 1414 possible ones) are independently 

generated.  In each of the 10,000 bootstrap battles we find the best-fitting model 

(maximum R2) over a and b, as before.  The estimated standard errors (i.e., the standard 

deviations of the bootstrap samples) of the maximum R2 for the square, linear, 

logarithmic, and optimum laws are, respectively, .131, .177, .197, and .174.  We see that, 

except for the square law, the differences in maximum R2 values are smaller than the 

estimated standard errors associated with them.  However, there are substantial positive 

correlations between the maximum R2 values for the different Lanchester models.  That 

is, bootstrap battles that fit one law well also tend to fit the other laws well.  In our 

resampling, we use the same resampled days for all four of the Lanchester laws that are 

compared.  Therefore, from our 10,000 bootstrap battles, we can count how often one law 

fits better than another.  This information is shown in Table 4.   
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Table 4.  Proportion of FCUD bootstrap battles (out of 10,000) in which the Lanchester law 
specified by the row fit better (i.e., had a higher R2) than the law specified by the column.  

Lanchester Law Square Linear Logarithmic 

Linear .9943 — —

Logarithmic .9187 .0548 —

Optimum fit .9968 .7270 .9275 

We see that the best fit almost always comes from either the optimum law (as fit 

to the original data) or the linear law.  Unfortunately, neither law is clearly better, as there 

is a reasonable chance (over one in four) that, in our bootstrap battles, the linear law 

actually has a higher maximum R2 value than the optimum law.  We do, however, get a 

reasonably strong ordering of the basic laws.  The linear law fits the data better than the 

logarithmic law in nearly 95 percent of the bootstrap battles.  Furthermore, the 

logarithmic law fits better than the square law almost 92 percent of the time. 

5.5   Battle Phases 

One of the assumptions that we (and previous researchers) made when fitting the 

above models is that the attrition coefficients (a and b) are constant during the battle.  Of 

course, we know that, even if a Lanchester law held exactly, these coefficients surely 

vary (at least) day by day.  Ideally, we would estimate daily attrition parameters to take 

into account the unique factors associated with each day in the data set.  Unfortunately, 

this results in a perfect fit for any Lanchester law and, thus, is not helpful.  However, we 

know from historical accounts that there were several phases in the battle in which the 

attrition coefficients should be relatively constant.  Specifically, at the start of the 

campaign, the Germans generally attacked prepared defenses.  Gradually, as they made 

progress, they engaged an increasing number of forces in a hasty defense.  On the eighth 

day of fighting—i.e., “the bloodbath at Prokhorovka”—the Soviets counterattacked.  

During the remaining six days, the Soviets were increasingly on the offensive, and the 

battle intensity faded.   

Figure 2 displays the actual and estimated (by the model) Soviet and German 

losses for the best-fitting constant attrition coefficient Lanchester linear law using the 
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FCUD data.  There are clear patterns in the differences between the estimated and actual 

losses.  Early in the campaign, and particularly on the first day, the actual losses are 

uniformly higher than the estimated losses for both sides.  For the Soviets, from day 

seven on (with the exception of day eight) the actual losses are less than the fitted ones.  

Similarly, for the Germans, from day six until the battle’s end (with the exception of day 

13) the actual losses are smaller than the estimated ones.  This suggests that the attrition 

rates varied as a function of which forces were attacking, the defensive postures, and the 

length of the battle—as one would expect.   
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Figure 2.  A comparison of the estimated losses (Soviets = SLest and Germans = GLest) with 
the actual losses (Soviets = SLact and Germans = GLact) for the best-fitting constant 
attrition coefficient Lanchester linear law using the FCUD data.   

The patterns in the differences between the model fits and the data suggest that we 

can improve the goodness of the fits if we fit separate attrition coefficients to the major 

phases of the battle—as Hartley and Helmbold (1995) did with the Inchon-Seoul data.  

The extra parameters guarantee a higher R2 value.  The issue is whether or not the 

improvement in fit justifies the reduction in parsimony.  One natural partitioning of the 

Battle of Kursk into four phases is as follows.  The first phase consists of the first two 

days of the campaign, with the Germans primarily attacking prepared defenses.  The 
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second phase, with the Germans pressing the attack against less-prepared defenses, 

contains days three through seven.  The historic eighth day is unique and is considered a 

phase by itself.  Of course, since this phase is only a single day, there is a perfect fit  

(i.e., no residual error); thus, this removes the (outlying) eighth day from the fits.  The 

fourth and last phase is days nine through 14.   

The four-phase model fits are much better than what is obtained with the constant 

attrition coefficient models—for all three data sets.  For both the ACUD and CCUD data, 

all of the basic Lanchester laws achieve R2 values of between .732 and .744.  While these 

fits are dramatically better than the earlier fits, almost all of the improvement comes from 

partitioning the battle into the four phases.  The R2 that is obtained by using the mean loss 

in each phase, for each side, as the sides’ estimated losses, is .734 and .730, respectively, 

for the ACUD and CCUD data.  As before, we get better fits from the FCUD data, with 

the R2 values from the basic Lanchester laws ranging from .836 to .860.  The FCUD 

phase mean model has an R2 of .796.   

Looking across all the data sets, we see that the additional improvement in fit 

from the Lanchester laws is small relative to the improvement achieved by using phases 

(i.e., adjusting for battle intensity, posture, terrain, etc.).  This suggests that there is more 

to be gained from accurately accounting for the phases of a battle than from ensuring that 

one uses the “correct” Lanchester law.  That is, with the right coefficients, any 

Lanchester phase-fitted model fits considerably better than the best-fitting constant 

attrition coefficient model.  Of course, determining battle phases is easier to do in 

hindsight than when predicting potential future battle outcomes.  Also, one must be wary 

of over-fitting, especially when one has only a small amount of data.  

These results are consistent with the discussion in Davis et al. (1997) and support 

the practice of many analysis organizations of regularly adjusting the attrition rates in 

large simulations to reflect changing battle conditions.  For example, while using the 

campaign-level simulation Concepts Evaluation Model (CEM), in support of Desert 

Storm planning, Appleget (1995) adjusted attrition calculations to reflect changing battle 

conditions every 12 hours.  In a smaller scale simulation of a Marine Expeditionary Force 

over a few days, utilizing the Amphibious Warfare Model (AWM), Akst (1995) adjusted 
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his attrition rates “in model periods of 1 hour and 6 hours.”  The attrition in AWM uses 

Bonder’s (1967) approach of calculating attrition coefficients based on estimates of 

detailed, situation-specific, battle factors such as mean time to acquire targets, mean time 

to fire at targets given an acquisition, average projectile flight time, re-engage delay 

times, probability of hit based on whether a previous shot missed or hit, and more.  In 

situations in which a quick reaction analysis is required—i.e., there is insufficient time to 

use large models, like CEM and AWM—our findings indicate that analysts using 

Lanchester models should worry more about the particulars of the potential battle than 

the choice of Lanchester law.  That is, with the proper coefficients, fit to the respective 

law, the results will be similar.  Thus, a reasonable approach may be to select the law 

with theoretical underpinnings that best match the postulated battle conditions.  In the 

case of the Battle of Kursk, while a famous direct fire battle, over the whole of the two 

weeks of fighting on the southern front, a collection of small duels (closer to a linear law) 

may be a better aggregate level representation than one big aimed fire (square law) battle.  

Indeed, in a series of simulation experiments, Speight (2002) showed how a series of 

mini-battles that “are roughly in line with a stochastic ‘square-linear’ Lanchester 

formulation” could produce aggregated campaign-level results that “are in accord with a 

‘log-linear’ law.” 

6.   CONCLUSION 

It is quite a challenge to model something as complex as combat attrition with 

functions as simple as Lanchester’s equations.  Inevitably, for highly aggregated data, 

many important factors (e.g., combat effectiveness, equipment, leadership, training, 

morale, organization, objectives, terrain, weather, luck, and so on) cannot be adequately 

accounted for in a four-parameter model.  Furthermore, the nature of combat results in a 

dearth of reliable combat data—especially detailed, two-sided, time-phased data—which 

makes assessing the quality of any model extremely difficult.  Consequently, despite 

many efforts, there have been few clear results regarding the validity of Lanchester’s 

equations as a model of aggregate attrition.   
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In this research, using the most carefully documented two-sided, time-phased 

battle data available, we find that the fighting combat units data enable much better fits to 

Lanchester’s equations than the within contact combat units and all combat units data 

sets.  Therefore, when using constant attrition coefficient Lanchester equations, there 

appears to be great benefit in restricting the force levels in the calculations to those that 

are actively engaged in combat, as opposed to all forces in a campaign.  In addition, the 

fits can be dramatically improved by adjusting the coefficients to account for changing 

battle conditions—e.g., phases of battle.  Among the basic constant coefficient 

Lanchester laws, the best fit was obtained by the linear law—which was very close to the 

optimal using the fighting units data—followed by the logarithmic and square laws, 

respectively.   

Comparing models of warfare to real data is almost always informative.  

Unfortunately, we need much more two-sided, time-phased battle data before we can 

make any definitive conclusions.  Even though this research involves one of the most 

carefully documented combined arms battles ever, it is important to emphasize that these 

findings are based on only one battle from over half a century ago.  More contemporary 

data are needed before we can assess how general and applicable these findings are.  

Since Lanchester equations and other, more sophisticated, models will continue to be 

used, the authors are hopeful that the military operations research community will strive 

to acquire more such data sets.   
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